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ABSTRACT 

Ground penetrating radar (GPR) subsurface sensing is a promising nondestructive evaluation (NDE) technique for 

inspecting and surveying underground utilities in complex urban environments, as well as for monitoring other key 

infrastructure such as bridges and railroads. A challenge of such technique lies on image formation from the recorded 

GPR data. In this work, a fast back projection algorithm (BPA) for three-dimensional GPR image construction is explored. 

The BPA is a time-domain migration method that has been effectively used in GPR image formation. However, most of 

the studies in the literature apply a computationally intensive BPA to a two-dimensional dataset under the assumption that 

an in-plane scattering occurs underneath the GPR antennas. This assumption is not precise for 3D GPR image formation 

as the GPR radiation scatters in multiple directions as it reaches the ground. In this study, a generalized form for an 

approximation to determine the scattering point in an air-coupled GPR system is developed which considerably reduces 

the required computations and can accurately localize the scattering point position. The algorithm is evaluated by 

applications on GPR data synthesized using GprMax, a finite-difference time domain (FDTD) simulator. 
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1. INTRODUCTION 

GPR is a remote NDE sensing technique to detect objects and features underneath the ground surface1. In the context of 

smart cities, GPR surveys are a promising NDE technique for the localization and mapping of underground infrastructure 

which  enables better management, metering and assessment of subterranean infrastructure2,3. GPR has also been used 

for localization of concrete rebars4, inspection of bridge decks5,6, and monitoring of railroad ballast7, etc. Data collected 

during GPR survey usually requires further processing to avoid incorrect data interpretation, enhance features of interest, 

or to determine target location and shape8,9. A common approach is to apply migration methods to the collected data. 

Several migration methods are available such as hyperbolic summation (HS)10, Kirchhoff’s migration (KM)11, phase shift 

migration (PSM)12, Stolt migration (SM)13, and the BPA. 

 

A review of these migration methods applied to GPR 2D B-scan dataset is presented by Ozdemir et al.14, which evaluates 

the performances of the methods mentioned above in terms of range and cross-range resolution, integrated sidelobe ratio 

(ISLR), signal-to-noise ratio (SNR) and computation time. The first three criteria are directly related to the signal focusing 

ability of each migration method, while the latter is important for practical applications, for instance when real-time (RT) 

analysis is desired15. The results show that the HS and PSM have low focusing ability in comparison to the KM, SM and 

BPA. These later three approaches are able to spatially determine the targets with good resolution and correct positioning. 

The KM however is computationally expensive and demands computation time much longer than all other migration 

algorithms. Hence their study suggests that the two most competitive migration methods are the SM and the BPA. The 

study14 concludes that the SM is the best migration method thanks to its lower computation time. However, the SM 

assumes zero distance between the transmitter and receiver antennas. Such assumption is not applicable for bistatic or 

mulstistatic radar where the transmitter antenna and receiver antenna are spatially separated. Moreover, the standard SM 

does not consider layered media, i.e. it assumes that the underground media is homogeneous and the scattered field is 

sensed at the ground level. To consider a layered media, the standard SM must be modified. One approach is to combine 

the PSM and SM, using the PSM to determine layers interface and the SM within each layer16, but that increases the 

computation time. 

 

The BPA is a time-based migration method that can be used to recover target depth and shape from GPR A-scan data set. 

The algorithm back-projects the emitted signal based on EM wave travel path and the associated travel time, analogous 

to the traditional back-projection methods in computer aided tomography17,18. The BPA is suitable for imaging subsurface 

in layered media19, and thus is suitable for processing data of air-coupled GPR systems in contrast with the SM. Also, the 

BPA does not require full data collection prior to algorithm computation, hence it can be potentially employed in real time 

analysis15 and parallel computation. Therefore, BPA is an attractive migration method for GPR data processing and is 

adopted in this work. For air-coupled GPR systems, considerable complexity and computational cost are involved to back 

project the scattering point on the wave travel path in BPA. For instance, if the height of the antennas in relation to the 

ground is assumed constant, determination of the scattering point yields a fourth order polynomial equation to resolve for 

the horizontal position19. 
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In the 2D case, a simplification introduced by Mast & Johansson20 can be used to estimate the scattering point with a 

good accuracy without the need to solve the fourth order polynomial equation. But Zhou, Huang & Su19 noticed that such 

approximation is inaccurate if the distance between the antennas and the target is large.  

 

In the 3D case, several other complications are introduced. For instance, the scattered wave pattern is highly dependent 

on the reflecting surface orientation and roughness. The refracted wave might not be within the same plane of the incident 

wave, implying that multiple refracting directions must be considered for proper signal back-projection. In that scenario, 

the number of calculations required becomes too large, rendering the BPA impractical. 

 

One approach to circumvent these limitations is to consider the signals only in the direction of antennas main emission, 

thus capturing those signals with higher SNR while greatly reducing the number of points computed. This requires the 

knowledge of antenna radiation pattern and information about radar orientation for each A-scan. We suggest another 

approach using the assumption that the refracted wave will remain in the same plane of the incident wave, i.e., that most 

of the energy will be scattered in the same plane as the incident wave, such that only this plane can be considered for 

back-projection. Under such assumption, we are able to extend the approximation methods given by Zhou, Huang & Su19 

and Mast & Johansoon20 by applying the appropriate change of coordinates, rendering a 3D back-projection algorithm 

that has a lower computational cost in comparison to a full 3D back-projection. We develop this approach and apply the 

algorithm to the synthetic data generated with GprMax21. 

 

This paper is organized as follows: In section 2 both the 2D and 3D approximation for the scattering point location are 

introduced, as well as the 3D BPA. In section 3 the BPA results for synthesized data are presented and discussed. Finally, 

in section 4 the concluding remarks are given. 

 

2. METHODOLOGY 
2.1. 2D scattering point approximation 

The refraction of the GPR signal in a bistatic air-coupled GPR system is illustrated in Fig. 1a. To determine the horizontal 

position 𝑥𝑆 of the scattering point, a fourth-order polynomial must be resolved, which is computationally intensive, 

especially considering that this equation needs to be resolved iteratively for each transmitter and receiver position to cover 

all observation angles. To reduce the computation, an approximation method is adopted19 . Assuming a homogeneous 

media, the horizontal position of the scattering point is then given by 

𝑥𝑆 =

{
  
 

  
 𝑥𝑃 +

𝑥𝑐 − 𝑥𝑝

√𝜖𝑟
, |𝑥𝑇 − 𝑥𝑃| < (𝑧𝑃 + ℎ)√

𝜖𝑟
(𝜖𝑟 − 1)
⁄

𝑥𝑝 +
𝑧𝑃

√𝜖𝑟 − 1
, 𝑥𝑇 ≥ 𝑥𝑃 + (𝑧𝑃 + ℎ)√

𝜖𝑟
(𝜖𝑟 − 1)
⁄

𝑥𝑝 −
𝑧𝑃

√𝜖𝑟 − 1
, 𝑥𝑇 ≤ 𝑥𝑝 − (𝑧𝑃 + ℎ)√

𝜖𝑟
(𝜖𝑟 − 1)
⁄

, (1) 

where 𝑥𝑝 is the horizontal position of the point of interest, 𝑧𝑝 is the depth of the point of interest, 𝑥𝑇 is the transmitter 

horizontal position, ℎ is the transmitter height assumed to be constant, 𝑥𝑐 is the point where a straight line connecting 𝑥𝑝 

and 𝑥𝑇 intersects the ground, and 𝜖𝑟 is the ground relative dielectric constant. For ground-coupled GPR systems, the back-

projection is simpler as the wave travel path is assumed to be a straight line, as shown in Fig. 1b. The first case in equation 

(1) above corresponds to the approximation previously introduced by Mast & Johansson20. 

Notice that the approximation (1) can also be used to determine the scattering point horizontal position 𝑥̃𝑆 from the point 

P to the receiver (see Fig.1a) by considering the point P as a source, analogous to the exploding source model22. In the 

following discussion the development is made in terms of the transmitter point of view, but these approximations are also 

used to determine the wave path back to the receiver. 

 

  
Figure 1: Diagram of the wave path considering a bistatic pair in (a) air-coupled GPR system and (b) ground-coupled GPR system. 
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2.2. 3D scattering point approximation 

Consider now the general air-coupled 3D case illustrated in Fig. 2. Assume that the transmitter antenna behaves like a 

point source emitting spherical electromagnetic waves. Once the wave reaches the ground, both refraction and reflection 

occur. Depending on ground geometry and texture, the refracted wave can be very complex and hard to model. If all 

possible refracted directions are considered, computational cost increases tremendously, as such consideration must be 

applied to all scattering points. To enable the usage of the BPA, some simplifying assumptions are made to reduce the 

computational cost. 

 

Assume that the ground surface is planar, the transmitter is perpendicular to such surface, and the ground is homogeneous 

with a dielectric constant 𝜖𝑟. The key assumption in our algorithm is that the main refraction remains in the same plane 

as the emitted wave, i.e., the path 𝑃𝑇
[𝑘]
→ 𝐴 is in the same plane as the path 𝐴 → 𝑃 in Fig. 2a.  

 

 

Figure 2: A 3D diagram of a bistatic pair, (a) illustrates the wave path in the 𝑥’𝑧’ plane and (b) the corresponding bird’s eye 

view. 

 

In a general 3D domain, a homogeneous transformation23 is used to express Eq. (1) for any plane perpendicular to the 

ground. A homogeneous transformation expresses both a rotation and a translation using a 4x4 matrix, and to operate with 

it an extra unitary coordinate is added to the point coordinate to account for the translation. Consider the bird’s eye view 

depicted in Fig. 2b. Let 𝑂𝑥𝑦𝑧 be a fixed frame of reference and 𝑂’𝑥’𝑦’𝑧’  a rotating frame of reference at the same position 

as the transmitter but on ground level, such that 𝑥’ points to the wave horizontal propagation direction. The coordinates 

of a point P expressed in the 𝑂’𝑥’𝑦’𝑧’ reference frame can be transformed to 𝑂𝑥𝑦𝑧 coordinates using the homogeneous 

transformation  

𝒑 = 𝑯𝒑′, (2) 
where 𝒑 is the homogeneous representation of point 𝑃 in the 𝑂𝑥𝑦𝑧 reference frame, 𝒑’ the homogeneous representation 

of P in the 𝑂’𝑥’𝑦’𝑧’ reference frame, and 𝑯 is the transformation matrix given by 

𝑯 = [

cos(𝜙) − sin(𝜙) 0 𝑥𝑇
sin(𝜙) cos(𝜙) 0 𝑦𝑇
0 0 1 0
0 0 0 1

] , (3) 

where  𝜙 is the angle between 𝑥 and 𝑥’ as shown in Fig. 2b.  

Let 𝑃 be a point that lies on the 𝑥’𝑧’ plane as shown in Fig 2b. Then 𝒑′ = [𝑥′, 0, 𝑧′, 1]𝑇 . Expanding the transformation 

(2) yields the following set of equations 

𝑥 = cos(𝜙) 𝑥′ + 𝑥𝑇 , (4) 
𝑦 = sin(𝜙) 𝑥′ + 𝑦𝑇 , (5) 

𝑧 = 𝑧′. (6) 
Notice that the 𝑧 coordinate is unaltered by this transformation. Isolating 𝑥′ in the expressions above, it has 

𝑥′ =
𝑥 − 𝑥𝑇
cos(𝜙)

, (7) 

𝑥′ =
𝑦 − 𝑦𝑇
sin(𝜙)

. (8) 

Consider the squared Snell’s law applied to the 𝑥’𝑦’ plane 

sin(𝜃𝑖)
2 = 𝜖𝑟 sin(𝜃𝑟)

2 , (9) 
with 𝜃𝑖 and  𝜃𝑟 as illustrated in Fig. 1a and 𝜖𝑟 being the dielectric constant of the ground. As |𝑥𝑇 − 𝑥𝑆| → ∞, the incident 

angle tends to equal 90° and sin(𝜃𝑖) → 1. Thus, for a transmitter distant from the point of interest, equation (6) yields 

𝑧𝑃
′2 + (𝑥𝑃

′ − 𝑥𝑆
′)2 = 𝜖𝑅(𝑥𝑃

′ − 𝑥𝑆
′)2. (10) 

Isolating 𝑥𝑆
′  

𝑥𝑆
′ = 𝑥𝑃

′ −
𝑧𝑃
′

√𝜖𝑟 − 1
, (11) 

where we assume, without loss of generality, that 𝑥𝑃 > 𝑥𝑆 > 𝑥𝑇 . 

Substituting Eq. (7) into Eq. (10) and isolating 𝑥𝑆 leads to 
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𝑥𝑆 = 𝑥𝑃 −
𝑧𝑃 cos(𝜙)

√𝜖𝑟 − 1
. (12) 

Notice that the sign of cos(𝜙) accounts for the cases where 𝑥𝑇 > 𝑥𝑃.  

We also have from the approximation20 

𝑥𝑆
′ = 𝑥𝑃

′ +
(𝑥𝐶

′ − 𝑥𝑃
′ )

√𝜖𝑟
, (13) 

where 𝑥𝐶
′  is the point at which the line connecting 𝑥𝑇

′  and 𝑥𝑃
′  intersects the ground line, given by 

𝑥𝐶
′ = 𝑥𝑇

′ +
𝑥𝑃
′ − 𝑥𝑇

′

𝑧𝑃
′ + ℎ

ℎ. (14) 

Applying Eq. (7) on Eq. (13) and Eq. (14) gives, respectively 

𝑥𝑆 =
√𝜖𝑟 − 1

√𝜖𝑟
𝑥𝑃 +

𝑥𝐶

√𝜖𝑟
, (15) 

 

𝑥𝐶 = 𝑥𝑇 +
𝑥𝑃 − 𝑥𝑇
𝑧𝑃 + ℎ

ℎ. (16) 

Then substituting Eq. (16) into Eq. (15) we have 

𝑥𝑆 = 𝑥𝑃 +
𝑧𝑃(𝑥𝑇 − 𝑥𝑃)

√𝜖𝑟(𝑧𝑃 + ℎ)
. (17) 

Eq. (12) is a better approximation for scene points that are away from the transmitter while Eq. (17) is a better 

approximation for scene points close to the transmitter. To establish a choice criterion, we look for the point where Eq. 

(12) and Eq. (17) yield the same scattering point. Imposing this equality condition leads to 

𝑥𝑃 − 𝑥𝑇 = cos(𝜙)
(𝑧𝑃 + ℎ)√𝜖𝑟

√𝜖𝑟 − 1
. (18) 

Therefore, we propose the following approximation for the scattering point 𝑥𝑆 of an 3D air-coupled GPR system 

𝑥𝑆 =

{
 
 

 
 𝑥𝑃 +

𝑧𝑃(𝑥𝑇 − 𝑥𝑃)

√𝜖𝑟(𝑧𝑃 + ℎ)
, 𝑖𝑓 |𝑥𝑃 − 𝑥𝑇| ≤ |cos(𝜙)|

(𝑧𝑃 + ℎ)√𝜖

√𝜖𝑟 − 1

𝑥𝑃 −
𝑧𝑃 cos(𝜙)

√𝜖𝑟 − 1
, 𝑖𝑓 |𝑥𝑃 − 𝑥𝑇| > |cos(𝜙)|

(𝑧𝑃 + ℎ)√𝜖

√𝜖𝑟 − 1

(19) 

where  

cos(𝜙) =
𝑥𝑃 − 𝑥𝑇

√(𝑥𝑃 − 𝑥𝑇)
2 + (𝑦𝑃 − 𝑦𝑇)

2
. (20) 

Then Eq. (7) combined with Eq. (8) is used to obtain the corresponding y-axis position for a given 𝑥 as 

𝑦 = 𝑦𝑇 +
𝑦𝑃 − 𝑦𝑇
𝑥𝑃 − 𝑥𝑇

(𝑥 − 𝑥𝑇). (21) 

 

2.3. Back-projection algorithm 

Initially we develop the BPA for a bistatic pair. Extension to multistatic GPR systems with an arbitrary number of 

transmitters and receivers can be readily obtained by extending the bistatic case and is presented in sequence. 

 

2.3.1. BPA for bistatic GPR image formation 

Consider the air-coupled bistatic pair taking the kth A-scan illustrated in Fig. 2a. The transmitter is at position 𝑃𝑇
[𝑘] =

(𝑥𝑇
[𝑘], 𝑦𝑇

[𝑘], −ℎ) and the receiver at position 𝑃𝑅
[𝑘] = (𝑥𝑅

[𝑘], 𝑦𝑅
[𝑘], −ℎ). For the ground-coupled GPR scan, the signal travel 

path is assumed to be a line from the transmitter to the point of interest in the domain. Thus, it is not necessary to introduce 

a homogeneous transformation as the wave path can be readily calculate as the Euclidean distance between the transmitter 

position and the point of interest. In this study, our focus is on BPA image formation for the air-coupled GPR scan. 

 

Assume that the distance between transmitter and receiver is fixed. The positions of the bistatic pair, instead of each 

transmitter and receiver individual positions, are enumerated. Then for the bistatic pair being is at the position k, it asserts 

that transmitter and receiver are at positions 𝑃𝑇
[𝑘]

 and 𝑃𝑅
[𝑘]

, respectively. The signal collected by the bistatic pair receiver 

at position 𝑘 at time instant t is 𝑠[𝑘](𝑡). In practice, the signal is sampled at a finite number of points, to increase the 

resolution, interpolations are performed in the algorithm implementation. 

 

The position of the scattering points A and B shown in Fig. 2a are given by (𝑥𝐴
[𝑘], 𝑦𝐴

[𝑘], 0) and (𝑥𝐵
[𝑘],   𝑦𝐵

[𝑘], 0), 

respectively, and are calculated using the expressions given in Eq. (19) and Eq. (21) as a function of 𝑃𝑇
[𝑘]

,  𝑃𝑅
[𝑘]

, and a 

given point P in the domain.  
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The round-trip time from an air-coupled transmitter to a point 𝑃 of interest in the domain and back to the receiver is given 

by 

𝑡(𝑃, 𝑃𝑇
[𝑘], 𝑃𝑅

[𝑘]) = (
𝑑𝑇𝐴
[𝑘]

𝑐
+
𝑑𝐴𝑃
[𝑘]

𝑣
) + (

𝑑𝑃𝐵
[𝑘]

𝑣
+
𝑑𝐵𝑅
[𝑘]

𝑐
) , (22) 

where the first term on the right-hand side of the equation represents the wave travel time from the transmitter to the point 

of interest, and the second term represents the wave travel time from the point of interest back to the receiver as shown 

in Fig. 2a.  

For the ground-coupled GPR system 

𝑡(𝑃, 𝑃𝑇
[𝑘], 𝑃𝑅

[𝑘]) =
𝑑𝑇𝑃
[𝑘] + 𝑑𝑃𝑅

[𝑘]

𝑣
. (23) 

In both Eq. (22) and Eq. (23), 𝑐 is the speed of light, and 𝑣 = 𝑐/ √𝜖𝑟   is the speed of the wave in the subsurface medium. 

Let 𝑑𝐴𝐵
[𝑘]

 denote the distance from a generic point A to a generic point B in the k-th scan. Then the distances in Eq. (22) 

are expressed as 

𝑑𝑇𝐴
[𝑘] = √(𝑥𝐴

[𝑘] − 𝑥𝑇
[𝑘])

2

+ (𝑦𝐴
[𝑘] − 𝑦𝑇

[𝑘])
2

+ ℎ2, (24) 

𝑑𝐴𝑃
[𝑘] = √(𝑥𝑃 − 𝑥𝐴

[𝑘])
2

+ (𝑦𝑃 − 𝑦𝐴
[𝑘])

2

+ 𝑧𝑃
2, (25) 

𝑑𝑃𝐵
[𝑘] = √(𝑥𝑃 − 𝑥𝐵

[𝑘])
2

+ (𝑦𝑃 − 𝑦𝐵
[𝑘])

2

+ 𝑧𝑃
2, (26) 

𝑑𝐵𝑅
[𝑘] = √(𝑥𝐵

[𝑘] − 𝑥𝑅
[𝑘])

2

+ (𝑦𝐵
[𝑘] − 𝑦𝑅

[𝑘])
2

+ ℎ2, (27) 

and in Eq. (23) as 

𝑑𝑇𝑃
[𝑘] = √(𝑥𝑇

[𝑘] − 𝑥𝑃)
2

+ (𝑦𝑇
[𝑘] − 𝑦𝑃)

2

+ 𝑧𝑃
2, (28) 

𝑑𝑃𝑅
[𝑘] = √(𝑥𝑅

[𝑘] − 𝑥𝑃)
2

+ (𝑦𝑅
[𝑘] − 𝑦𝑃)

2

+ 𝑧𝑃
2. (29) 

To implement the BPA algorithm, a set of points of interest in the domain are selected. Consider for instance a spatial 

regular grid given by [𝑥1, … , 𝑥𝑁𝑥] × [𝑦1, … , 𝑦𝑁𝑦] × [𝑧1, … , 𝑧𝑁𝑧]. For each position 𝑘 of the bistatic pair the travel times of 

all domain points are calculated using Eq. (22) for an air-coupled GPR system or Eq. (23) for a ground-coupled GPR 

system. The calculated times can be stored in an array. The points in the domain are enumerated to calculate the 

coordinates of each point 𝑃𝑖 , where 𝑖 = 1…𝑁, and 𝑁 = 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧. Then, in the case where 𝑀 A-scans are taken, the 

round-trip times are stored in an array as  

𝑇 = [𝑡𝑖,𝑘], 𝑖 = 1…𝑁, 𝑘 = 1…  𝑀, (30) 

where 

𝑡𝑖,𝑘 = 𝑡(𝑃𝑖 , 𝑃𝑇
[𝑘], 𝑃𝑅

[𝑘]). (31) 

The array in Eq. (30) records the travel times from a bistatic pair at position k to all points 𝑃𝑖 . An advantage of calculating 

Eq. (30) is that it can be highly parallelized to reduce the computation time. Since the points in the domain are enumerated, 

this representation facilitates the algorithm implementation. Furthermore, considering a given bistatic pair at position 𝑘 

and a given point 𝑃𝑖 , the corresponding received signal is 

𝑠𝑖,𝑘 = 𝑠[𝑘](𝑡𝑖,𝑘). (32) 

The domain can be represented as a tridimensional matrix 𝐷𝑁𝑥×𝑁𝑦×𝑁𝑧 where each component holds the added signals. For 

a point 𝑃𝑖  we have the corresponding coordinates (𝑥𝑙 , 𝑦𝑚, 𝑧𝑙) and the associated index (𝑙, 𝑚, 𝑛) in 𝐷, such that the signal 

𝑠𝑖,𝑘 can be added to 𝐷(𝑙,𝑚, 𝑛). Let the addition of the signal 𝑠𝑖,𝑘 to the appropriate index of the point 𝑃𝑖  be represented 

as 𝑠𝑖,𝑘|𝑃𝑖, then the full application of BPA is expressed as 

𝐷 =∑∑𝑠𝑖,𝑘|𝑃𝑖

𝑁

𝑖=1

𝑀

𝑘=1

. (33) 

Eq. (33) highlights using an array in Eq. (30) is convenient for implementation, as we can use lookup tables for the 

appropriate position indexes while retain a simple description of the algorithm. For a survey performed in an irregular 

grid, scan positions can be stored as an array of coordinates for the corresponding A-trace. Furthermore, Eq. (30) shows 

that the BPA image is formed by adding signals of all collected A-scans to the appropriate locations in the domain. 

 

2.3.2. BPA for multistatic GPR image formation 

Consider a multistatic GPR system composed of P transmitters and Q receivers. The image formed by the qth receiver can 

be computed using Eq. (33) for each transmitted signal and summing each resulting image. Then the image formed by 

the qth receiver 𝐷𝑞 is 
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𝐷𝑞 =∑∑∑𝑠𝑖,𝑘
𝑝,𝑞
|𝑃𝑖

𝑁

𝑖=1

𝑀

𝑘=1

𝑃

𝑝=1

, (34) 

with 

𝑠𝑖,𝑘
𝑝,𝑞
= 𝑠[𝑝,𝑞,𝑘](𝑡𝑖,𝑘

𝑝,𝑞
), (35) 

𝑡𝑖,𝑘
𝑝,𝑞
= 𝑡(𝑃𝑖 , 𝑃𝑝

[𝑘], 𝑃𝑞
[𝑘]), (36) 

where 𝑠[𝑝,𝑞,𝑘](𝑡) denotes the signal emitted by the pth transmitter collected by the qth receiver with the GPR system at the 

kth position at a time 𝑡, and 𝑡𝑖,𝑘
𝑝,𝑞

 now uses Eq. (31) with the corresponding position 𝑃𝑝
[𝑘]

 of the pth transmitter and 𝑃𝑞
[𝑘]

 of 

the qth receiver. Furthermore, 𝑠𝑖,𝑘
𝑝,𝑞
|𝑃𝑖  denotes the addition of the signal collected by the qth receiver from the pth transmitter 

at time 𝑡𝑖,𝑘
𝑝,𝑞

 when the GPR system is at position k to the appropriate domain point 𝑃𝑖 . To compose the final image, all the 

images formed by each receiver are added. Thus, for a multistatic GPR system the full application of the BPA is 

𝐷 =∑𝐷𝑞
𝑄

𝑞=1

=∑∑∑∑𝑠𝑖,𝑘
𝑝,𝑞
|𝑃𝑖

𝑁

𝑖=1

𝑀

𝑘=1

𝑄

𝑞=1

𝑃

𝑝=1

. (37) 

 
Notice that the application of the BPA implies that points of a real target will get signal contributions from many receivers. 

For instance, consider Fig. 3. Each spherical surface represents signal contributions from different radar positions. As 

these signals are added to form the BPA image, a real target position will be at the intersection of the contributing signals, 

illustrated by the dark point in Fig. 3. This leads to the focusing of the signal at that point and potential recovery of object’s 

shape. 

However, in the algorithm implementation a discretized domain must be used, and the set of points might not exactly 

coincide with the intersecting points. To account for that, interpolation of the sampled signal is required. A way to 

circumvent this limitation is by increasing the number of points around a region of interest. 

 
Figure 3: Scheme of the signal focusing using BPA. Each spherical surface represents signal contribution from different radar 

positions. All signals contribute to the intersecting point, such that the accumulated value is higher at the real target location. 

 

The algorithm steps can be summarized as follows: 

1. Define a set of points of interest in the domain. 

2. Calculate the travel times from each point in the domain to each position of the antennas using equation (22). 

This step can be computed in parallel. 

3. For each receiver antenna in the domain, using the times calculated in step 2, retrieve signal value and add 

contributions to the domain points. This step requires signal interpolation since the collected signal is discrete. 

Addition to points can be performed in parallel, but for one antenna at each time. 

 

3. RESULTS 
In our implementation, we take advantage of the lower number of computations under the same plane refraction 

assumption and the high parallelization potential of Eq. (30) and Eq. (33) to reduce computation time. We use CUDA for 

GPGPU on a standard commercial notebook to dramatically reduce computation time. In the following discussion, 

dimensions are given as width versus length versus height or depth. 

 

3.1. Synthetic GPR data 

To synthesize 3D GPR data, the FDTD based GPR simulator GprMax is used. Two models are considered, including, a 

block buried in concrete, and crossed cylinders in a concrete slab. In all simulations, the dielectric constants are set as 

𝜖𝑐𝑜𝑛𝑐𝑟𝑒𝑡𝑒 = 6 and 𝜖𝑡𝑎𝑟𝑔𝑒𝑡 = 8. Furthermore, a radar system moves in x direction in each B-scan as illustrated in Fig. 3. 
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In the bistatic case (Fig. 3a), the receiver is positioned ahead of the transmitter and they are aligned with the scan direction. 

Details about the distances are given for each experiment. In the mulstitatic arrangement (Fig. 3b), two extra receivers 

are added to the bistatic configuration. They are positioned parallel to the central receiver perpendicular to the scan 

direction. 

  
Figure 4: B-scans are performed along the x-axis by (a) bistatic radar, except for the last simulation where a (b) multistatic radar is 

used. Several B-scans are taken to compose a C-scan that is used as the input for the BPA. 

 

3.1.1 Block buried in concrete 

A model of a block of dimensions 100x100x50 mm buried at a depth of 50 mm inside a concrete slab is considered as a 

sample target. An air-coupled GPR simulation, with the bistatic pair at a height of 100 mm above the ground is performed 

(Fig. 4a). The transmitter antenna is a Hertzian dipole antenna, and the radiation signal is a second order Ricker wave 

with center frequency of 2 GHz. The synthesized B-scan consists of 40 A-scans, 10 mm apart of each other. The receiver 

is 50 mm away from the transmitter in the scanning direction. To compose the C-scan, 17 B-scans were created, each 

apart by 20 mm in the y direction. A domain of dimensions 300x300x150 mm is discretized in 50x50x50 elements for the 

execution of the BPA. The resulting BPA image is shown in Fig. 5. The top figure shows a 3D view of the result with 

isosurfaces highlighting the top and bottom surfaces of the buried block. Figures (5b) and (5c) show the indicated cross 

sections of the BPA image, while figures (5d) and (5e) show the corresponding input data for these cross sections. The 

BPA is able to form the bottom and top faces of the block indicating that Eq. (19) works well for the considered range. 

 

 
 

Figure 5: Resulting image of BPA applied on a synthetic bistatic air-coupled C-scan of a block buried in concrete. (a) 3D view, arrow 

indicates GPR B-scan direction; (b) and (c) shows the indicated cross sections; (d) and (e) shows the corresponding raw data of each 

cross section. 
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3.1.2. Crossed cylinders in concrete 

In the second simulation, crossed cylinders in a concrete slab are considered. The first cylinder, whose longitudinal axis 

is parallel to the y-axis, has a diameter of 25.4 mm and is at a depth of 64 mm. The second, transversal cylinder has a 

diameter of 25.4 mm, and is buried at a depth of 88 mm. An air-coupled GPR simulation is performed with the bistatic 

pair at a height of 100 mm above the ground (Fig. 4a). The transmitter antenna is an ideal Hertzian dipole emitting second 

order Ricker waves with center frequency of 2 GHz that was used to generate B-scans, each composed of 40 A-scans 10 

mm apart of each other. To compose the C-scan, 21 B-scans are generated, each apart by 10 mm. The synthetic data is 

time-gated to remove the ground reflection. The domain dimension is 200x400x150 mm and is discretized with 40x20x40 

elements. The resulting image is shown in Fig. 6. The top figure shows a 3D view of the result with isosurfaces 

highlighting the bottom surfaces of the cylinders. Figures (6b) and (6c) show the indicated cross sections of the BPA 

image, while figures (6d) and (6e) show the corresponding input data for these cross sections. The position and 

arrangement of the cylinders are recovered, but it is harder to recover isosurfaces that isolate exclusively the cylinders 

position. The shape is also not recovered due to the wavelength resolution. 
 

Furthermore, the same setup is scanned with a multistatic air-coupled GPR system with one transmitter and three parallel 

receivers as illustrated in Fig 4b. The receivers are 50 mm in front of the transmitter and 50 mm apart from each other. 

The domain is discretized to a grid of 40x20x40. The raw data is time gated to remove the ground reflection. The resulting 

BPA image is show in Fig. 7. The top figure shows a 3D view of the result with isosurfaces highlighting the bottom 

surfaces of the cylinders. Figures (7b) and (7c) show the indicated cross sections of the BPA image, while figures (7d) 

and (7e) show the corresponding input data for these cross sections. Notice that results vary slightly in relation to the 

bistatic case, suggesting that the middle antenna dominates over other signals. In the air-coupled system, the signal loss 

is higher, so stronger signals can dominate the image. For instance, in Fig. 7c, notice the circular-like shape around the 

top cylinder. Because the signal close to the cylinder is significantly higher than in other positions, this signal contribution 

is noticeable throughout the domain. Nonetheless, the resulting composition of signals given by the BPA is still focused 

at the cylinder position and can be clearly distinguished. 

 

 
 

Figure 6: Resulting image of BPA applied on a synthetic bistatic air-coupled C-scan of a concrete slab with two crossing cylinders. 

(a) 3D view, arrow indicates GPR B-scan direction; (b) and (c) shows the indicated cross sections; (d) and (e) shows the 

corresponding raw data of each cross section. 
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Figure 7: Resulting image of multistatic BPA applied on a synthetic multistatic air-coupled C-scan of a concrete slab with two 

crossing cylinders. (a) 3D view, arrow indicates GPR B-scan direction; (b) and (c) shows the indicated cross sections; (d) and (e) 

shows the corresponding raw data of the central receiver for each cross section. 

 

4. CONCLUSIONS 
In this work a fast 3D back-projection algorithm was introduced. The algorithm reduces the number of required 

computations by assuming that the refracted electromagnetic wave remains in the same plane as the incident wave. Under 

such assumption, simplifications for the estimation of the scattering point previously used in a two-dimensional case can 

be extended to the 3D domain. We presented a generalized form for the approximation of the scattering point and the 

back-projection method as simple, compact formulas. Furthermore, the BPA algorithm is suitable for parallelization, 

enabling the use of GPU that considerably reduces computation time with potential real-time application. 

The BPA was applied to synthetic data. We show that the BPA can recover both object’s shape and position with good 

accuracy on air-coupled bistatic and multistatic GPR systems. Complex arrangements such as the crossing cylinders can 

also be recovered using the BPA. 
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